Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 13(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38337466

RESUMEN

Background: Bladder cancer is a common urinary tract malignancy. Minimally invasive radical cystectomy has shown oncological outcomes comparable to the conventional open surgery and with advantages over the open procedure. However, outcomes of the two main minimally invasive procedures, robot-assisted and pure laparoscopic, have yet to be compared. This study aimed to compare in-hospital outcomes between these two techniques performed for patients with bladder cancer. Methods: This population-based, retrospective study included hospitalized patients aged ≥ 50 years with a primary diagnosis of bladder cancer who underwent robot-assisted or pure laparoscopic radical cystectomy. All patient data were extracted from the US National Inpatient Sample (NIS) database 2008-2018 and were analyzed retrospectively. Primary outcomes were in-hospital mortality, prolonged length of stay (LOS), and postoperative complications. Results: The data of 3284 inpatients (representing 16,288 US inpatients) were analyzed. After adjusting for confounders, multivariable analysis revealed that patients who underwent robot-assisted radical cystectomy had a significantly lower risk of in-hospital mortality (adjusted OR [aOR], 0.50, 95% CI: 0.28-0.90) and prolonged LOS (aOR, 0.63, 95% CI: 0.49-0.80) than those undergoing pure laparoscopic cystectomy. Patients who underwent robot-assisted radical cystectomy had a lower risk of postoperative complications (aOR, 0.69, 95% CI: 0.54-0.88), including bleeding (aOR, 0.73, 95% CI: 0.54-0.99), pneumonia (aOR, 0.49, 95% CI: 0.28-0.86), infection (aOR, 0.55, 95% CI: 0.36-0.85), wound complications (aOR, 0.33, 95% CI: 0.20-0.54), and sepsis (aOR, 0.49, 95% CI: 0.34-0.69) compared to those receiving pure laparoscopic radical cystectomy. Conclusions: Patients with bladder cancer, robot-assisted radical cystectomy is associated with a reduced risk of unfavorable short-term outcomes, including in-hospital mortality, prolonged LOS, and postoperative complications compared to pure laparoscopic radical cystectomy.

2.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38400233

RESUMEN

The unconsolidated near surface and large, daily temperature variations in the desert environment degrade the vertical seismic profiling (VSP) data, posing the need for rigorous quality control. Distributed acoustic sensing (DAS) VSP data are often benchmarked using geophone surveys as a gold standard. This study showcases a new simulation-based way to assess the quality of DAS VSP acquired in the desert without geophone data. The depth uncertainty of the DAS channels in the wellbore is assessed by calibrating against formation depth based on the concept of conservation of the energy flux. Using the 1D velocity model derived from checkshot data, we simulate both DAS and geophone VSP data via an elastic pseudo-spectral finite difference method, and estimate the source and receiver signatures using matching filters. These field geophone data show high amplitude variations between channels that cannot be replicated in the simulation. In contrast, the DAS simulation shows a high visual similarity with the field DAS first arrival waveforms. The simulated source and receiver signatures are visually indistinguishable from the field DAS data in this study. Since under perfect conditions, the receiver signatures should be invariant with depth, we propose a new DAS data quality control metric based on local variations of the receiver signatures which does not require geophone measurements.

3.
Adv Mater ; 36(19): e2400310, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38298099

RESUMEN

Rapid-acting, convenient, and broadly applicable medical materials are in high demand for the treatment of extensive and intricate tissue injuries in extremely medical scarcity environment, such as battlefields, wilderness, and traffic accidents. Conventional biomaterials fail to meet all the high criteria simultaneously for emergency management. Here, a multifunctional hydrogel system capable of rapid gelation and in situ spraying, addressing clinical challenges related to hemostasis, barrier establishment, support, and subsequent therapeutic treatment of irregular, complex, and urgent injured tissues, is designed. This hydrogel can be fast formed in less than 0.5 s under ultraviolet initiation. The precursor maintains an impressively low viscosity of 0.018 Pa s, while the hydrogel demonstrates a storage modulus of 0.65 MPa, achieving the delicate balance between sprayable fluidity and the mechanical strength requirements in practice, allowing flexible customization of the hydrogel system for differentiated handling and treatment of various tissues. Notably, the interactions between the component of this hydrogel and the cell surface protein confer upon its inherently bioactive functionalities such as osteogenesis, anti-inflammation, and angiogenesis. This research endeavors to provide new insights and designs into emergency management and complex tissue injuries treatment.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Hidrogeles/química , Materiales Biocompatibles/química , Humanos , Animales , Viscosidad , Ratones , Osteogénesis/efectos de los fármacos
4.
ACS Appl Mater Interfaces ; 16(4): 4784-4792, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38228185

RESUMEN

The unsatisfactory performance of Zn metal anodes significantly impedes the commercial application of aqueous zinc-ion batteries (AZIBs). Herein, we introduce a trace amount of a multifunctional trehalose additive to enhance the stability and reversibility of Zn metal anodes. The trehalose additive exhibits a stronger Zn2+ ion affinity due to abundant lone-pair electrons, disrupting hydrogen bonds in H2O, regulating solvation structures, and tuning the Zn-electrolyte interface. Consequently, the Zn metal anode demonstrates a remarkable Coulombic efficiency of 99.80% and a cycle stability exceeding 4500 h at 1 mA cm-2. Even under stringent conditions of 10 mA cm-2, the Zn metal anode maintains a cumulative capacity of 2500 mA h cm-2 without a short circuit. Furthermore, Zn//Zn symmetric batteries exhibit excellent low-temperature cycle performance (over 400 h at -10 °C). As a proof of concept, assembled Zn//NH4V4O10 and Zn//MnO2 pouch cells demonstrate an improved electrochemical performance. This work presents an electrolyte additive strategy for achieving stable zinc anode operation in AZIBs.

5.
ACS Nano ; 17(21): 22106-22120, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37902250

RESUMEN

Diabetic wounds represent a persistent global health challenge with a substantial impact on patients' health and overall well-being. Herein, a hydrogel system that integrates functionalized gold nanorods (AuNRs) and M2 macrophage-derived exosomes (M2-Exos) was developed to achieve an efficient and synergistic therapy for diabetic wounds. We introduced an ion-cross-linked dissipative network into a prefabricated covalent cross-linked network (long-chain polymer network), which was prepared using AuNRs as a specific cross-linker. The ion network was then cross-linked with the long-chain polymer in situ to form a specific network structure, imparting antiswelling and photothermal effects to the hydrogel. This integrated hydrogel system effectively scavenged reactive oxygen species levels, inhibited inflammation, promoted angiogenesis, and stimulated photothermal antibacterial activity through near-infrared (NIR) irradiation. To demonstrate the potential of the hydrogel, we established experimental animal models of oral mucosa ulceration and full-thickness skin defects. In vivo results confirmed that M2-Exos released from the hydrogels played a crucial role in wound closure. Furthermore, the synergistic effect of AuNRs and NIR photothermal effects eradicated bacterial infections in the wound area. Overall, our integrated hydrogel system is a promising tool for accelerating chronic diabetic wound healing and tissue regeneration. This study highlights the potential benefits of combining bioactive M2-Exos and the photothermal effect of AuNRs into an antiswelling hydrogel platform to achieve satisfactory wound healing in patients with diabetes.


Asunto(s)
Diabetes Mellitus , Exosomas , Animales , Humanos , Hidrogeles , Cicatrización de Heridas , Antibacterianos/farmacología , Polímeros
6.
Sensors (Basel) ; 23(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37896712

RESUMEN

Distributed acoustic sensing (DAS) has emerged as a transformational technology for seismic data acquisition. However, noise remains a major impediment, necessitating advanced denoising techniques. This study pioneers the application of diffusion models, a type of generative model, for DAS vertical seismic profile (VSP) data denoising. The diffusion network is trained on a new generated synthetic dataset that accommodates variations in the acquisition parameters. The trained model is applied to suppress noise in synthetic and field DAS-VSP data. The results demonstrate the model's effectiveness in removing various noise types with minimal signal leakage, outperforming conventional methods. This research signifies diffusion models' potential for DAS processing.

7.
Int J Nanomedicine ; 18: 4933-4947, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693886

RESUMEN

Background: Dentin caries remains a significant public concern, with no clinically viable material that effectively combines remineralization and antimicrobial properties. To address this issue, this study focused on the development of a bio-inspired multifunctional nanogel with both antibacterial and biomineralization properties. Methods: First, p(NIPAm-co-DMC) (PNPDC) copolymers were synthesized from N-isopropylacrylamide (NIPAm) and 2-methacryloyloxyethyl-trimethyl ammonium chloride (DMC). Subsequently, PNPDC was combined with γ-polyglutamic acid (γ-PGA) through physical cross-linking to form nanogels. These nanogels served as templates for the mineralization of calcium phosphate (Cap), resulting in Cap-loaded PNPDC/PGA nanogels. The nanogels were characterized using various techniques, including TEM, particle tracking analysis, XRD, and FTIR. The release properties of ions were also assessed. In addition, the antibacterial properties of the Cap-loaded PNPDC/PGA nanogels were evaluated using the broth microdilution method and a biofilm formation assay. The remineralization effects were examined on both demineralized dentin and type I collagen in vitro. Results: PNPDC/PGA nanogels were successfully synthesized and loaded with Cap. The diameter of the Cap-loaded PNPDC/PGA nanogels was measured as 196.5 nm at 25°C and 162.3 nm at 37°C. These Cap-loaded nanogels released Ca2+ and PO43- ions quickly, effectively blocking dental tubules with a depth of 10 µm and promoting the remineralization of demineralized dentin within 7 days. Additionally, they facilitated the heavy intrafibrillar mineralization of type I collagen within 3 days. Moreover, the Cap-loaded nanogels exhibited MIC50 and MIC90 values of 12.5 and 50 mg/mL against Streptococcus mutans, respectively, with an MBC value of 100 mg/mL. At a concentration of 50 mg/mL, the Cap-loaded nanogels also demonstrated potent inhibitory effects on biofilm formation by Streptococcus mutans while maintaining good biocompatibility. Conclusion: Cap-loaded PNPDC/PGA nanogels are a multifunctional biomimetic system with antibacterial and dentin remineralization effects. This strategy of using antibacterial nanogels as mineral feedstock carriers offered fresh insight into the clinical management of caries.


Asunto(s)
Calcinosis , Caries Dental , Humanos , Nanogeles , Cariostáticos , Colágeno Tipo I , Caries Dental/tratamiento farmacológico , Antibacterianos/farmacología
8.
Microsc Microanal ; 29(Supplement_1): 1898-1899, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613930
9.
Bioact Mater ; 27: 181-199, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37091064

RESUMEN

Lamellar bone, compactly and ingeniously organized in the hierarchical pattern with 6 ordered scales, is the structural motif of mature bone. Each hierarchical scale exerts an essential role in determining physiological behavior and osteogenic bioactivity of bone. Engineering lamellar bone with full-scale hierarchy remains a longstanding challenge. Herein, using bioskiving and mineralization, we attempt to engineer compact constructs resembling full-scale hierarchy of lamellar bone. Through systematically investigating the effect of mineralization on physicochemical properties and bioactivities of multi-sheeted collagen matrix fabricated by bioskiving, the hierarchical mimicry and hierarchy-property relationship are elucidated. With prolongation of mineralization, hierarchical mimicry and osteogenic bioactivity of constructs are performed in a bidirectional manner, i.e. first rising and then descending, which is supposed to be related with transformation of mineralization mechanism from nonclassical to classical crystallization. Construct mineralized 9 days can accurately mimic each hierarchical scale and efficiently promote osteogenesis. Bioinformatic analysis further reveals that this construct potently activates integrin α5-PI3K/AKT signaling pathway through mechanical and biophysical cues, and thereby repairing critical-sized bone defect. The present study provides a bioinspired strategy for completely resembling complex hierarchy of compact mineralized tissue, and offers a critical research model for in-depth studying the structure-function relationship of bone.

10.
ACS Appl Mater Interfaces ; 15(16): 19847-19862, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37042619

RESUMEN

Developing an effective treatment strategy of drug delivery to improve diabetic wound healing remains a major challenge in clinical practice nowadays, due to multidrug-resistant bacterial infections, angiopathy, and oxidative damage in the wound microenvironment. Herein, an effective and convenient strategy was designed through a self-healing multiple-dynamic-bond cross-linked hydrogel with interpenetrating networks, which was formed by multiple-dynamic-bond cross-linking of reversible catechol-Fe3+ coordinate bonds, hydrogen bonding, and Schiff base bonds. The excellent autonomous healing of the hydrogel was initiated and accelerated by Schiff bonds with reversible breakage between 3,4-dihydroxybenzaldehyde containing catechol and aldehyde groups and chitosan chains, and further consolidated by the co-optation of other noncovalent interactions contributed of hydrogen bonding and Fe3+ coordinate bonds. Intriguingly, cathelicidin LL-37 was introduced and uniformly dispersed in the dynamic interpenetrating networks of the hydrogel as a bioactive molecular to orchestrate the diabetic wound healing microenvironment. This multifunctional wound dressing can significantly promote diabetic wound healing by antibacterial activity, immunomodulation, anti-inflammation, neovascularization, and antioxidant activity. Therefore, this study provided an effective and safe strategy for guiding the diabetic wound treatment in clinical applications.


Asunto(s)
Diabetes Mellitus , Hidrogeles , Hidrogeles/farmacología , Aldehídos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Catecoles/farmacología
11.
Adv Healthc Mater ; 12(18): e2203105, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36912184

RESUMEN

Guided bone regeneration membranes are widely used to prevent fibroblast penetration and facilitate bone defect repair by osteoblasts. However, the current clinically available collagen membranes lack bone induction and angiogenic capacities, exhibiting limited bone regeneration. The mechanically sensitive channel, Piezo1, which is activated by Yoda1, has been reported to play crucial roles in osteogenesis and angiogenesis. Nevertheless, the application of Yoda1 alone is unsustainable to maintain this activity. Therefore, this study fabricates a Yoda1-loading bilayer membrane using electrospinning technology. Its inner layer in contact with the bone defect is composed of vertically aligned fibers, which regulate the proliferation and differentiation of cells, release Yoda1, and promote bone regeneration. Its outer layer in contact with the soft tissue is dense with oriented fibers by UV cross-linking, mainly preventing fibroblast infiltration and inhibiting the immune response. Furthermore, the loaded Yoda1 affects osteogenesis and angiogenesis via the Piezo1/RhoA/Rho-associated coiled-coil-containing protein kinase 1/Yes1-associated transcriptional regulator signaling pathway. The results reveal that the Yoda1 bilayer membrane is efficient and versatile in accelerating bone regeneration, suggesting its potential as a novel therapeutic agent for various clinical issues.


Asunto(s)
Regeneración Ósea , Canales Iónicos , Osteogénesis , Transducción de Señal , Canales Iónicos/metabolismo , Membranas/metabolismo , Inductores de la Angiogénesis , Pirazinas , Tiadiazoles
12.
Adv Healthc Mater ; 12(17): e2300064, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36854114

RESUMEN

Insufficient angiogenesis frequently occurs after the implantation of orthopedic materials, which greatly increases the risk of bone defect reconstruction failure. Therefore, the development of bone implant with improved angiogenic properties is of great importance. Mimicking the extracellular matrix clues provides a more direct and effective strategy to modulate angiogenesis. Herein, inspired by the bioelectrical characteristics of the bone microenvironment, a piezoelectric bioactive glasses composite (P-KNN/BG) based on the incorporation of polarized potassium sodium niobate is constructed, which could effectively promote angiogenesis. It is found that P-KNN/BG has exceptional wireless electrical stimulation performance and sustained active ions release. In vitro cell experiments reveal that P-KNN/BG enhances endothelial cell adhesion, migration, and differentiation via activating the eNOS/NO signaling pathway, which might be contributed to cell membrane hyperpolarization induced by wireless electrical stimulation increase the influx of active ions into the cells. In vivo chick chorioallantoic membrane experiment demonstrates that P-KNN/BG shows excellent pro-angiogenic capacity and biocompatibility. This work broadens the current understanding of bioactive materials with bionic electrical properties, which brings new insights into the clinical treatment of bone defect repair.


Asunto(s)
Huesos , Neovascularización Fisiológica , Células Endoteliales , Adhesión Celular , Iones/farmacología , Osteogénesis , Vidrio
13.
J Nanobiotechnology ; 21(1): 62, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36814282

RESUMEN

Guided bone regeneration (GBR) is widely used in treating oral bone defects to exclude the influence of non-osteogenic tissue on the bone healing process. The traditional method of GBR with a titanium mesh to treat large-area bone defects is limited by the deficiency of increased trauma and costs to patients. Herein, a bi-layered scaffold for GBR composed of a fiber barrier layer and a self-healing hydrogel repair layer is successfully fabricated. The barrier layer is a fibrous membrane material with specific porosity constructed by electrospinning, while the functional layer is a self-healing hydrogel material formed by multiple dynamic covalent bonds. The system can provide an osteogenic microenvironment by preventing the infiltration of connective tissue to bone defects, maintain the stability of the osteogenic space through the self-healing property, and regulate the release of bioactive substances in the dynamic physical condition, which is beneficial to osteoblast proliferation, differentiation, and bone regeneration. This study focused on exploring the effects of different crosslinkers and bonding methods on the comprehensive properties of hydrogels. and proved that the hybrid scaffold system has good biocompatibility, cell barrier function and can enhance bone regeneration activity. Thereby it could be a promising clinical strategy for bone regeneration.


Asunto(s)
Regeneración Ósea , Hidrogeles , Humanos , Hidrogeles/química , Diferenciación Celular , Osteogénesis
14.
J Colloid Interface Sci ; 639: 369-384, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36812853

RESUMEN

Treatment for chronic diabetic wounds remains a clinical challenge. Wound healing process occurs in three phases: inflammation, proliferation and remodeling. Several factors including bacterial infection, decreased local angiogenesis and diminished blood supply delay wound healing. There is an urgent need to develop wound dressings with multiple biological effects for different stages of diabetic wound healing. Here, we develop a multifunctional hydrogel with two-stage sequential release upon near-infrared (NIR) stimulation, antibacterial activity and pro-angiogenic efficacy. This hydrogel consists of covalently crosslinked bilayer structure, with the lower thermoresponsive poly(N-isopropylacrylamide)/gelatin methacrylate (NG) layer and the upper highly stretchable alginate/polyacrylamide (AP) layer embedding different peptide-functionalized gold nanorods (AuNRs) in each layer. Antimicrobial peptide-functionalized AuNRs released from NG layer exert antibacterial effects. After NIR irradiation, the photothermal transition efficacy of AuNRs synergistically enhances bactericidal efficacy. The contraction of thermoresponsive layer also promotes the release of embedded cargos during early stage. The pro-angiogenic peptide-functionalized AuNRs released from AP layer promote angiogenesis and collagen deposition by accelerating fibroblast and endothelial cell proliferation, migration and tube formation during the subsequent healing phases. Therefore, the multifunctional hydrogel with effective antibacterial activity, pro-angiogenic efficacy and sequential release behaviors is a potential biomaterial for diabetic chronic wound healing.


Asunto(s)
Diabetes Mellitus , Nanotubos , Humanos , Hidrogeles/química , Oro/química , Cicatrización de Heridas , Antibacterianos/química , Péptidos , Nanotubos/química
15.
J Colloid Interface Sci ; 630(Pt B): 804-816, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36356448

RESUMEN

A multi-functional nanocatalytic system based on combined therapies has attracted considerable research attention in recent years due to its potential in the treatment of cancer. Herein, ZnO2@Au@ZIF-67 nanoparticles (NPs) based on hydroxyl radical (•OH) mediated chemodynamic therapy (CDT) and glucose-exhausting starvation therapy (ST) were constructed. Specifically, in the acidic tumor microenvironment (TME), the pH responsive decomposition of the shell ZIF-67 triggered the release of the Fenton-like catalyst Co2+, after which the exposed zinc peroxide (ZnO2) reacted with H2O (H+) to generate O2 and hydrogen peroxide (H2O2). The generated O2 could alleviate hypoxia in the TEM and interact with ultra-small Au NPs originally coated on ZnO2 to catalyze intracellular glucose and to produce another source of H2O2. While the glucose consumption caused the starvation of tumor cells, the generated H2O2 from dual sources reacted with the catalyst Co2+ to generate highly toxic •OH for CDT. Systematic in vitro and in vivo experiments were carried out to evaluate this nanocatalytic system, and the results showed an enhanced efficacy of this cancer therapy.


Asunto(s)
Nanopartículas , Neoplasias , Óxido de Zinc , Humanos , Peróxido de Hidrógeno/química , Línea Celular Tumoral , Microambiente Tumoral , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Glucosa
16.
J Mater Sci Mater Med ; 33(9): 63, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36065035

RESUMEN

Current evidence has suggested that diabetes increases the risk of implanting failure, and therefore, appropriate surface modification of dental implants in patients with diabetes is crucial. TiO2 nanotube (TNT) has an osteogenic nanotopography, and its osteogenic properties can be further improved by loading appropriate drugs. Cinnamaldehyde (CIN) has been proven to have osteogenic, anti-inflammatory, and anti-bacterial effects. We fabricated a pH-responsive cinnamaldehyde-TiO2 nanotube coating (TNT-CIN) and hypothesized that this coating will exert osteogenic, anti-inflammatory, and anti-bacterial functions in a simulated diabetes condition. TNT-CIN was constructed by anodic oxidation, hydroxylation, silylation, and Schiff base reaction to bind CIN, and its surface characteristics were determined. Conditions of diabetes and diabetes with a concurrent infection were simulated using 22-mM glucose without and with 1-µg/mL lipopolysaccharide, respectively. The viability and osteogenic differentiation of bone marrow mesenchymal stem cells, polarization and secretion of macrophages, and resistance to Porphyromonas gingivalis and Streptococcus mutans were evaluated. CIN was bound to the TNT surface successfully and released better in low pH condition. TNT-CIN showed better osteogenic and anti-inflammatory effects and superior bacterial resistance than TNT in a simulated diabetes condition. These findings indicated that TNT-CIN is a promising, multifunctional surface coating for patients with diabetes needing dental implants. Graphical abstract.


Asunto(s)
Implantes Dentales , Diabetes Mellitus , Nanotubos , Acroleína/análogos & derivados , Antiinflamatorios/farmacología , Humanos , Concentración de Iones de Hidrógeno , Nanotubos/química , Osteogénesis , Propiedades de Superficie , Titanio
18.
Water Res ; 222: 118869, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35870390

RESUMEN

The potential threats of shale gas wastewater discharges to receiving waters is of great concern. In this study, chemical analyses and biomonitoring were performed three times in a small river that received treated wastewater over a two-year period. The results of chemical analyses showed that the concentrations of chloride, conductivity, barium, and strontium increased at the discharge site, but their concentrations decreased considerably farther downstream (≥500 m). The concentrations of toxic organic compounds (16 US EPA priority polycyclic aromatic hydrocarbons and 6 priority phthalates), trace metals (strontium, arsenic, zinc, copper, chromium, lead, cadmium, nickel, and neodymium), and natural radionuclides (40K, 238U, 226Ra, and 232Th) were comparable to the corresponding background values or did not exhibit obvious accumulation in sediments with continued discharge. Morphological and environmental DNA approaches were used to reveal the potential effects of wastewater discharges on aquatic ecosystems. The results showed that the community structure of benthic invertebrates was not altered by the long-term discharges of shale gas wastewaters. However, the biodiversity indices (richness and Shannon) from the two approaches showed inconsistencies, which were caused by multiple reasons, and that substrates had a strong influence on the morphological biodiversity indices. A multimetric index was proposed to further analyze morphological and environmental DNA data, and the results showed no significant difference between the upstream and downstream sites. Generally, the chemical and biological results both demonstrated that the discharges of shale gas wastewaters had limited impacts on river ecosystems within two years.


Asunto(s)
ADN Ambiental , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Gas Natural , Compuestos Orgánicos , Estroncio/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/química
19.
J Colloid Interface Sci ; 623: 21-33, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35569222

RESUMEN

For chronic persistent skin injuries, functional wound dressings with improved antibacterial action and cell control are extremely appealing. In this study, we design and fabricate a composite fiber dressing with near-infrared (NIR) laser-induced hyperthermia and transformable topographies that can protect the wound from bacterial infection while also encouraging cell recruitment and tissue regeneration. Polycaprolactone/gelatin (PCL/Gel) with melting point close to photothermal temperature were electrospun as the supporting matrix. The zeolitic imidazolate framework-8 (ZIF-8)-derived nanocarbon was synthesized as NIR laser-triggered nanoagent and then electrospun within oriented PCL/Gel fibers to enable the inorganic/polymer composite fiber dressing with photo-to-thermal conversion effect and drug loading capability. The composite fiber dressing exhibits excellent photothermal performance and stage-specific transformable topographies (photothermal-triggered melting behavior of oriented PCL/Gel fibers) after multiple laser irradiations, which can generate local massive heat and abundant drug release for synergistic sterilization, as well as direct cell migration and adhesion/spreading to promote tissue regeneration. Furthermore, in vivo testing demonstrates that the photothermal-responsive fiber dressing accelerates wound closure process by synergistically improving antibacterial and cell manipulation. Overall, this composite fiber dressing offers a promising integrated wound healing strategy.


Asunto(s)
Vendajes , Cicatrización de Heridas , Antibacterianos/farmacología , Liberación de Fármacos , Gelatina/farmacología
20.
Small ; 18(11): e2107544, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35038225

RESUMEN

Chronic wound infection is one of the critical complications of diabetes and is difficult to cure. Although great efforts have been made, the development of special dressings that serve as therapeutic strategies to effectively promote wound healing in diabetic individuals remains a major challenge. In this study, a shape-programmable hierarchical fibrous membrane composite system is developed for synergistic modulation of the inflammatory microenvironment to treat chronically infected wounds. The system comprises a functional layer and a shape-programmable backing layer. A temperature-responsive shape-memory mechanism achieves biaxial mechanically active contractions of diabetic wounds in a programmable manner. To summarize, the membrane system combines antimicrobial activity, controlled drug release according to the need of wound healing, mechanical modulation with shape-programmable, robust adhesion, and on-demand debonding to biological tissue to rationally guide chronic wound management. A synergistic combination of antibacterial fiber network and released drugs shows broad-spectrum antibacterial activity. In vitro and in vivo evaluations indicate the dressing efficiency in promoting and supporting wound healing. The insights from this study demonstrate the effectiveness of a hierarchical composite membrane system with shape-programmability as a potential treatment in the care of diabetic wounds.


Asunto(s)
Diabetes Mellitus , Cicatrización de Heridas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Vendajes , Liberación de Fármacos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...